落絮飞雁的个人网站

顺流而下,把梦做完

HDOJ1003:Max Sum——简单动态规划

Problem Description
Given a sequence a[1],a[2],a[3]……a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000). Output For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases. Sample Input 2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5 Sample Output Case 1: 14 1 4 Case 2: 7 1 6 DP问题。注意数组必须要开到100000以上才可以。 思路大体是开一个临时的子串并不断跟sum进行比较。复习一下动态规划再看。 代码:

另一版本

部分参考自网络。


原始链接:HDOJ1003:Max Sum——简单动态规划|落絮飞雁的个人网站
授权协议:创作共用 署名-非商业性使用 2.5 中国大陆
除注明外,本站文章均为原创;转载时请保留上述链接。