姊妹篇:推荐几款应用程序——WIN篇
下午休息。继续把OSX篇补完~
READ MORE →
系统重装好了?来看看常用的软件吧。
READ MORE →
动态链表的课后作业。直接上代码:
READ MORE →
利用数组对两个矩阵进行转置。附上简单代码:
READ MORE →
Problem Description
人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即”可乐”),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研究起了著名的RPG难题:
有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.
以上就是著名的RPG难题.
如果你是Cole,我想你一定会想尽办法帮助LELE解决这个问题的;如果不是,看在众多漂亮的痛不欲生的Cole女的面子上,你也不会袖手旁观吧?
Input
输入数据包含多个测试实例,每个测试实例占一行,由一个整数N组成,(0=4是才能用。
f[1]=k; f[2]=k*(k-1); f[3]=k*(k-1)*(k-2);
如果n很大的会话,可以利用矩阵乘法快速幂进行加速。
可以参考Matrix67的博客
代码:
#include
int main()
{
_int64 i, t = 1, j, n[52];
n[1] = 3;
n[2] = n[3] = 1;
for (i = 4; i
一道关于递推的题目,题目链接在这里
READ MORE →
Problem Description
有一只经过训练的蜜蜂只能爬向右侧相邻的蜂房,不能反向爬行。请编程计算蜜蜂从蜂房a爬到蜂房b的可能路线数。
其中,蜂房的结构如下所示。
Input
输入数据的第一行是一个整数N,表示测试实例的个数,然后是N 行数据,每行包含两个整数a和b(0<a<b<50)。
Output
对于每个测试实例,请输出蜜蜂从蜂房a爬到蜂房b的可能路线数,每个实例的输出占一行。
Sample Input
2
1 2
3 6
Sample Output
1
3
递推求解,注意_int64。
代码:
#include
int main()
{
int a, b, n, i;
_int64 cell[52] = { 1, 1, 2 };
for (i = 3; i
从江西回来已经快一周了。写写在路上在路上发生的那些好玩的事儿,再不写就忘了……
READ MORE →
Problem Description
大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。
不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!
现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?
Input
输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。
Output
对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
Sample Input
2
3
Sample Output
1
2
思路:
错排序列问题。难点在于找到递归式;初始状态F(1)=0,F(2)=1和状态转移式F(n)=(n-1)*F(n-2)
代码:
#include
int main()
{
__int64 n, i, a[21] = { 1, 2 };
for (i = 2; i
Problem Description
There are many students in PHT School. One day, the headmaster whose name is PigHeader wanted all students stand in a line. He prescribed that girl can not be in single. In other words, either no girl in the queue or more than one girl stands side by side. The case n=4 (n is the number of children) is like
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
Input
There are multiple cases in this problem and ended by the EOF. In each case, there is only one integer n means the number of children (11、如果n个人的合法队列的最后一个人是男,则对前面n-1个人的队列没有任何限制,他只要站在最后即可,所以,这种情况一共有F(n-1);
所以F(n)=F(n-1)+F(n-2)+F(n-4)。因为题目要求n取值在1000以内,超过了_int64的大小。所以要用大数运算来做。但是大数运算至今没搞懂,就直接从网上找了大数的模板了……
代码:
#include
#include
#include
using namespace std;
long long s[1010][1005];
int main()
{
int i,j,n;
memset(s,0,sizeof(s));
s[1][0]=1;s[2][0]=2;s[3][0]=4;s[4][0]=7;
for(i=5;i=10){
s[i][j+1]+=s[i][j]/10;
s[i][j]%=10;
}
}
}
while(cin>>n){
i=1000;
while(i--){
if(s[n][i]!=0)
break;
}
cout=0;i--)
printf("%d",s[n][i]);
cout